TEMPORAL ANALYSIS AND FORECASTING

July 2024

ABOUT ME. .

Angela Backer-Hines

Analyst since 2005; have worked at task forces, state fusion center, city and county law enforcement agencies

Master's Degree in Criminal Behavior from Tiffin University
CLEA since 2012
CICA since 2017 , Lifetime CICA in 2022

Currently work for the Eagan Police Department in MN
On the training and certification committees, and an instructor for the IACA and Arizona State University's Crime Analysis Masters Program.
abhines@cityofeagan.com

TEMPORAL ANALYSIS AND NEXT EVENT PREDICTION

REMINDERS

- These specific techniques are best applied to series predictions.
- We need to use the dates/times the incident OCCURRED, not when it was reported.
- Ranges of hours or days are expected in many property crimes and will be accounted for in our analysis.

BEHAVIOR

Humans are habitual creatures. We develop highly effective muscle memory and maintain routines of behavior to get through the mundane tasks in our lives.

Our repetitive and habitual nature also makes us very predictable. For instance, we tend to drive the same route to work or school, and prefer to shop and eat at our favorite places. This is also true for criminals, whether taking care of personal responsibilities or planning and executing their crimes.

This behavioral repetition is the foundation of tactical crime series analysis and next-event prediction.

PREDICTING THE NEXT HIT

DAYS OF THE WEEK

Frequency

Tempo

Burn Rate

FREQUENCY

Count how many incidents occurred on each day

Burglary by Day

TEMPO

March 2024

SUNDAY MONDAY

TUESDAY
WEDNESDAY THURSDAY FRIDAY

- Identify if there is a pattern
- Every three days, two days, four days, etc.

TEMPO

Case Number	Date	Time	Interval	DOW
$24-1234$	$3 / 5 / 2024$	$0100-0350$		Tue
$24-1235$	$3 / 7 / 2024$	$0130-0320$	2	Thu
$24-1236$	$3 / 8 / 2024$	$2315-0345$	1	Fri
$24-1237$	$3 / 10 / 2024$	$0210-0400$	2	Sun
$24-1238$	$3 / 14 / 2024$	$2215-0330$	4	Thu
$24-1239$	$3 / 16 / 2024$	$2330-0345$	2	Sat
$24-1240$	$3 / 17 / 2024$	$0200-0415$	1	Sun
$24-1241$	$3 / 19 / 2024$		2	Tue

Average	2
Standard Dev	1
Median	2
Mode	2
Min	1
Max	4

BURN RATE

- When there is no discernable temporal pattern...
- Does the value of the stolen goods correlate with the frequency of their activity?

Thefts Associated with Offender X: Property Value v Temporal Interval

Figure 12-16: Timeline of crimes with ratio of property value stolen to interval.

Case Number	Date	Time	Interval	Property Value	Ratio \$ per Day	Prediction Days (with Avg)	\mid Prediction Days (with Median)
24-1234	3/5/2024	0100-0350	0	\$300	150.00		
24-1235	3/7/2024	0130-0320	2	\$100	100.00		
24-1236	3/8/2024	2315-0345	1	\$350	175.00		
24-1237	3/10/2024	0210-0400	2	\$600	150.00		
24-1238	3/14/2024	2215-0330	4	\$325	162.50		
24-1239	3/16/2024	2330-0345	2	\$100	100.00		
24-1240	3/17/2024	0200-0415	1	\$300	150.00	2.15	2.1
24-1241	3/19/2024		2	\$700		5.01	4.7
		Average	2	\$ 353.57	\$ 139.58		
		Standard Dev	1	228.4132637	\$ 32.03		
		Median	2	\$ 325.00	\$ 150.00		
		Min	1	\$ 100.00	\$ 100.00		
		Max	4	\$ 700.00	\$ 175.00		
		Correlation Coefficient		0.981423606			
				Positive correla	between the	perty value taken and the dars	s between hits

PREDICTING THE NEXT HIT

HOURS OF THE DAY

MIDPOINT ANALYSIS

Basic analytic method to deal with uncertain temporal data is to calculate the midpoint of the timeframe of an incident. In essence - calculating the median of the incidents' time to find frequency and make a prediction.

The downside to this method is that it assigns an artificially high probability to an arbitrary median in the data, so while simple, it is not the most reliable.

MIDPOINT ANALYSIS

AORISTIC ANALYSIS

Aoristic analysis addresses a temporal problem common with some types of recorded crime. In many cases, police know exactly when a crime occurred.

When victims of crime are unable to say when the event occurred, many police departments record a crime event as having a 'start' date and time, and an 'end' date and time. These dates/times can also be referred to as the 'from' and 'to' date and time. The start date-time usually references when the person left their house (or parked their car), and the end date-time records when they first discovered their property missing. The period between the start date-time and end date-time is referred to as the event's time span. Incidents that have an undetermined event time are described as 'aoristic'.

Hours
Case Numbers

	24-1234	24-1235	24-1236	24-1237	24-1238	24-1239	24-1240	Total	Percentage
2100									
2200					1			1	4\%
2300			1		1	1		3	11\%
0000			1		1	1		3	11\%
0100	1	1	1		1	1		5	19\%
0200	1	1	1	1	1	1	1	7	26\%
0300	1	1	1	1	1	1	1	7	26\%
0400							1	1	4\%
0500								0	0\%
0600								0	0\%
0700								0	0\%
0800								0	0\%
								27	

A proportional probability distribution is the aoristic approach, which distributes the relative probability of the time event across each hour.

	B1	B2	B．		B4	B6	Bs	B1	B1		B15	B16	B17	B18	B19	Total	\％	
2100																\bigcirc	0	
2200			\times			\times							\times			3	5	
2300			\times		\times	\times	\times				\times		\times	\times		7	411	
0000			\times		\times	\times	\times				\times		\times	\times		7	4	
0100			\times		\times	\times	\times	\times	\times		\times		\times	又		9	814	
0200	－		\times		\times	\times	\times	\times	\times		又	\times	\times	\times	\times	12	19	384．
0300	\times		\times		\times	\times	\times	\times	\times		又	\times	\times	\times	X	12	19	36°
0400		\times	\times		\times	\times								\times		5	8	
0500		\times	\times		\times	X										4	6	
0600			\times		Х	－										3	5	
0700			\times													1	2	
0800																0	0	
																$4 / 4$		

Calculate the time frame by making a grid for the hours of the day，add up the incidents in each hour block and calculate the percentage for the ranges．

Count the incidents per hour，calculate the percentage and concentrate on the highest frequency times．

COMPARISON

REMINDER

Mon-	15		th.	-	13	4	4	1	tib	4	4	4	3	$=$		4	17	4	4)	13	4	th	1	13
Tue	13	3	1	It	13	12	18	1	12	17	11	12	18	15	4	14	14	12	+	11	3	4	18	4
Wed	1	\%	1	is	$1{ }^{1}$	18	\#1	4	1	12	is	4	ता	11	\%	4	12	4	4	3	4	4	5	16
This	11	41	18	1	14	12	14	1	\square	13	4	4	17	π	2	16	17	17	4	11	17.	11	+	4
Fri-	14	4	4	H	11	7	\pm	!	11	12	13	π	17	स	\%	3	12	17	8	15	14	42	4	13
Sas	1	4	4	17	"	18	12	1	\pm	12	4	14	15.	8	*)	1	1	1	4	12	4	*	12	18
Sun	18	is	18	14	\square	18	4	12		9	7	10	5	4	f	4	12	4	4	15	13	4	11	\pm
	0	1	2	3	4	5	6	7	$\dot{8}$	9	10			13	14	15	16	17	18	19	20	21	22	23

Frequency
22
20
16
16
14
12
10
10

USING OUR EXAMPLE NUMBERS FROM EARLIER:

If the suspects continue to act as they have in the past, anticipate our next hit being on Saturday March 23, most likely between 0200 and 0400 hours.

CONSIDERATIONS

- If all known timeframes are over 24 hours, you cannot reliably predict the anticipated time of the next hit.
- If most incidents could have occurred over multiple days (e.g., vacation burglary), you could conduct a midpoint analysis of the days or, better yet, a similar calculation to the aoristic analysis of days of the week noting that the reliability of the prediction will be reduced due to the lack of specific temporal data.

TEMPORAL PROGRESSION

- Times changing throughout the series
- Correlation to geographic/spatial pattern

Example - Incidents are progressively occurring later in the night (or earlier the next morning) as the incidents get further away from their central node of activity (residence).

LINEAR REGRESSION

If there is a strong correlation of your incidents over time (either increasing or decreasing in frequency somewhat consistently) you can use Linear Regression to forecast the next interval.

Date	Interval Days	Dow	Series Item
$1 / 1 / 2024$		Mon	1
$1 / 11 / 2024$	10	Thu	2
$1 / 19 / 2024$	8	Fri	3
$1 / 27 / 2024$	8	Sat	4
$2 / 3 / 2024$	7	Sat	5
$2 / 10 / 2024$	7	Sat	6
$2 / 14 / 2024$	4	Wed	7
$2 / 17 / 2024$	3	Sat	8
Next Hit	2.428571429		9
Corr Coef	-0.952500953		

Figure 12-31: Accelerating tempogram including trendline \& forecast.

TEMPORAL APPROXIMATION METHOD

- Estimates the probability that a specific type of crime will occur at any given hour of the day based on the current series and past incidents.
- Including in our analysis the historical crimes that we have precise KNOWN times for of similar crime type.

KEEP IN MIND

We are dealing with humans, and many factors are at play in every person's life, including suspects. Even the best, most accurate predictions can still be thwarted by a suspect who changes their pattern of behavior or an outside factor or influence that changes the 'game'.

Don't fret if your forecast/prediction does not come to fruition, go back and reassess with this new information and try again.

REFERENCES

Jerry Ratcliffe:
https://www.jratcliffe.net/aoristic-
analysis\#:~:text=What\%20is\%20aoristic\%20analysis\%3F,or\%20when\%20they\%20were\%20assaulted

Andrew Wheeler:
https://andrewpwheeler.com/2018/09/03/aoristic-analysis-for-hour-of-day-and-day-of-week-in-excel/

Oswald, L., \& Leitner, M. (2020). Evaluating temporal approximation methods using burglary data. ISPRS International Journal of Geo-Information, 9(6), 386.

IACA (2017). Exploring Crime Analysis: Readings on Essential Skills (3rd ed.). International Association of Crime Analysts.

FUTURE CLASSES IN THE TACTICAL SERIES

SPATIAL ANALYSIS

CRIMINAL BEHAVIOR AND TACTICAL PROFILING

PRODUCTS AND DISSEMINATION

EFFECTIVE RESPONSE

IIII:

AFTER THE ARREST

Angela Backer-Hines Eagan Police Department abhines@cityofeagan.com

QUESTIONS?

